Bias in Epidemiological Studies of Conflict Mortality*

NEIL F. JOHNSON
Department of Physics, University of Miami

MICHAEL SPAGAT
Department of Economics, Royal Holloway College, University of London

SEAN GOURLEY
Department of Physics and Said Business School, University of Oxford

JUKKA-PEKKA ONNELA
Department of Physics and Said Business School, University of Oxford and Department of Biomedical Engineering and Computational Science, Helsinki University of Technology

GESINE REINERT
Department of Statistics, Oxford University

Cluster sampling has recently been used to estimate the mortality in various conflicts around the world. The Burnham et al. study on Iraq employs a new variant of this cluster sampling methodology. The stated methodology of Burnham et al. is to (1) select a random main street, (2) choose a random cross street to this main street, and (3) select a random household on the cross street to start the process. The authors show that this new variant of the cluster sampling methodology can introduce an unexpected, yet substantial, bias into the resulting estimates, as such streets are a natural habitat for patrols, convoys, police stations, roadblocks, cafes, and street-markets. This bias comes about because the residents of households on cross-streets to the main streets are more likely to be exposed to violence than those living further away. Here, the authors develop a mathematical model to gauge the size of the bias and use the existing evidence to propose values for the parameters that underlie the model. The research suggests that the Burnham et al. study of conflict mortality in Iraq may represent a substantial overestimate of mortality. Indeed, the recently published Iraq Family Health Survey covered virtually the same time period as the Burnham et al. study, used census-based sampling techniques, and produced a central estimate for violent deaths that was one fourth of the Burnham et al. estimate. The authors provide a sensitivity analysis to help readers to tune their own judgements on the extent of this bias by varying the parameter values. Future progress on this subject would benefit from the release of high-resolution data by the authors of the Burnham et al. study.

* We thank Nils Petter Gleditsch, Madelyn Hicks, three anonymous referees, and participants at the Informal Summer Workshop on Complex Networks and Social Dynamics, 2007, in Helsinki; the Survey Conference 2007: Surveying Health in Complex Situations, Brussels; and the Households in Conflict 2007 conference at the University of Sussex. Gesine Reinert was funded in part by MMCOMNET Grant No. FP6-2003-BEST-Path-012999. Correspondence: m.spagat@rhul.ac.uk.
Introduction

Recent studies of conflict mortality, such as the one on Iraq (Burnham et al., 2006), survey households using a cluster-sampling methodology. Cluster sampling itself is not problematic, but the micro-level details on how households are selected at the final stage of sampling are crucial and widely overlooked (see Appendix A for details). As described by the Expanded Program on Immunization (EPI) sampling methodology (e.g., Spiegel & Salama, 2000; Depoortere et al., 2004; Coghlan et al., 2006), these studies often initiate the sampling process from some easily accessible geographical feature, such as the center of a village, in order to economize resources and ensure staff safety. The stated procedures in Burnham et al. (2006) call for selecting a ‘constituent administrative unit’ and then selecting a main street from ‘a list of all main streets. A residential street was then randomly selected from a list of residential streets crossing the main streets’ (Figures 1 and 2). The field team would enumerate the households on the street, select one at random, and initiate the interviewing from this household, proceeding to 39 further ‘adjacent’ households. This cross-street sampling algorithm (CSSA, our terminology) introduced by Burnham et al. (2006) is a new variant of the final stage of the EPI sampling methodology. In this article, we examine the potential bias that can arise from the cross-street sampling algorithm.

For conflicts like the one in Iraq, violent events tend to be focused around cross-streets, since they are a natural habitat for patrols, convoys, police stations, parked cars, road-blocks, cafes, and street-markets. Major highways would not offer such a wide range of potential targets – nor would secluded neighborhoods (Figure 2, Gourley et al., 2006). Note that although interviews may progress away from the initial household on a cross street to a main street, such progress is limited by the number of adjacent households visited, in this case 39, in moving from one household to the next one (Figure 2).

Here we gauge the potential bias resulting from the cross-street sampling algorithm. This bias is an example of non-coverage bias, which, in turn, is a special case of non-response bias (Cochran, 1977; Thompson, 1997). Such bias is notoriously difficult to assess; Cochran (1977: 361) summarizes that ‘We are left in the position of relying on some guess about the size of the bias, without data to substantiate the guess.’ There are three main approaches in the literature to assess such non-coverage bias, namely weighting (for an overview, see Groves, 1989), modeling (Little, 1982), and imputation (Rubin, 1987). We apply a modeling approach, since the data that has been released by the authors of Burnham et al. (2006) so far is insufficient for either weighting or imputation.

The structure of the article is as follows. In the next section, we present our model and propose a set of parameter values for it that we believe are reasonable for the Burnham et al. (2006) study based on the information that has been released. The model and estimated parameter values suggest that the study has considerably overestimated conflict mortality in Iraq. We then discuss the mechanics of the model and elaborate further on the meaning of the parameters. Next, we show how the results of the model

1 The third stage consisted of random selection of a main street within the administrative unit from a list of all main streets. A residential street was then randomly selected from a list of residential streets crossing the main street. On the residential street, houses were numbered and a start household was randomly selected. From this start household, the team proceeded to the adjacent residence until 40 households were surveyed. (Burnham et al., 2006)

2 These ideas were first put forward by some authors of this article in Bohannon (2006).
vary with the underlying parameters. After the conclusion, we offer two appendices. In the first, we give background on cluster sampling and the final-stage sampling methods that have been applied in Burnham et al. (2006) and some other recent conflict surveys. We derive our sampling-bias formula in Appendix B.
Model and Parameter Estimation

The cross-street sampling algorithm of Burnham et al. (2006) divides the underlying population into two distinct groups, namely, those who can be sampled under the CSSA methodology and those who cannot. Using the following model, we estimate the exposure to violence for each group and quantify the potential bias resulting from the CSSA.

Let us consider a population of size N, where people reside in households inside the survey space (denoted S_i), which means that they are reachable through the selection scheme; $N_o = N - N_i$ people reside in households outside the survey space (denoted S_o) and are hence unreachable (e.g., Figure 2). Note that S_i and S_o can be spatially fragmented and interdispersed. Daily human movement is modelled via the model parameter f_i, the probability of an S_i resident being present in S_o, and f_o, the probability of an S_o resident being present in S_o. Probabilities of death for anyone present in S_i or S_o are, respectively, q_i and q_o, regardless of the location of the households of these individuals. We define the bias factor as the ratio of the expected number of deaths obtained by restricting the survey to S_i households to the expected number of deaths in the entire population (i.e., S_i and S_o); in the context of non-response bias, similar approaches can be found, for example, in Kish & Hess (1958) and in Groves (1989).

Setting $q = q_i/q_o$ and $n = N_o/N_i$ (see Appendix B for a derivation), we obtain

$$ R = \frac{(1+n)(1+qf_i-f_i)}{(q-1)(f_i-f_o)+qn+1} \quad (1) $$

Figure 3 shows the parameter regimes where $R > 1$ and $R < 1$. For the Iraq study (Burnham et al., 2006) the following regimes are likely:

1. The relative probability of death for anyone present in S_i (regardless of their zone of residence) to that of S_o is $q = q_i/q_o$. It is likely that the streets that define the samplable region S_i are sufficiently broad and well-paved for military convoys and patrols to pass, are highly suitable for street-markets and concentrations of people and are, therefore, prime targets for improvised explosive devices, car bombs, sniper attacks, abductions, and drive-by shootings. Given the extent and frequency of such attacks, a value of $q = 5$ is plausible. Indeed, many cities worldwide have homicide rates which vary by factors of ten or more between adjacent neighbourhoods (Gourley et al., 2006).

2. The proportion of population resident in S_o to that resident in S_i is $n = N_o/N_i$. Street layouts in Iraq are mostly irregular, hence the cross-street sampling algorithm will miss any neighbourhood not in the immediate proximity of a cross-street (Figs 1 and 2). Analysis of Iraqi maps suggests $n = 10$ is plausible (Gourley et al., 2006).

3. Intuitively, the probability f_i is roughly the average fraction of time spent by residents of S_i in S_i. Similarly, f_o is roughly the average fraction of time spent by residents of S_o in S_o. Given the nature of the violence, travel is limited; women, children, and the elderly tend to stay close to home. Consequently, mixing of populations between the zones is minimal. Using the time people spend in their homes as a lower bound on the time they must spend within their zones, we can obtain rough estimates for f_i and f_o. Assuming that there are two working-age males per average household of seven (Burnham et al., 2006), with each spending six hours per 24-hour day outside their own zone, yields $f_i = f_o = 5/7 + 2/7 \times 18/24 = 13/14$. Here, we emphasize that f_i and f_o refer to the
fractions of time spent *anywhere* within S_i and S_o respectively; that is, they are *not* simply the fractions of time spent at home. Likewise, the respective probabilities q_i and q_o of being killed refer to the probability of people being killed *anywhere* within their zone; that is, they are *not* simply probabilities of being killed at home. In other words, our model makes no assumption whatsoever about whether people are killed in their homes or not.

These specific values yield $R = 3.0$ (Figure 3), suggesting that the Iraq estimate (Burnham et al., 2006) provides a substantial overestimate. Burnham et al. (2006) assume that $R = 1$. If $R = 3$ actually is the true ratio, then they overestimate the number of deaths by a factor of 3. Indeed, the survey of the Iraq Family Health Survey Study Group (2008) covered virtually the same time period as the Burnham et al. (2006) study, used census-based sampling techniques, and produced a central estimate for violent deaths that was one-fourth of the Burnham et al. (2006) estimate. Of course, other parameter values and other values of R are possible. In Section 4, we provide a sensitivity analysis to clarify how R varies with the underlying parameters. A lack of precise information about the implementation in Burnham et al. (2006), and hence values for f_i, f_o, q, and n, prevents a firmer quantification at this stage – and we do not rule out the existence of additional biases in the Burnham et al.
(2006) study. Conflict surveys are undoubtedly difficult and may necessitate adapted methodologies. For this reason, quantitative tools, such as Equation (1), should prove invaluable in gauging any unexpected biases resulting from the cross-street sampling algorithm.

Discussion of the Model

Our model has been designed to be as simple as possible while capturing the relevant aspects of the bias phenomenon. It could be argued that the value of the parameter q, which is a ratio of the probabilities of being killed in the two zones, might differ between types of individuals, such as working-age males and children, and, in addition, these values should perhaps depend on the time of the day. As there is presently insufficient information to estimate these aspects of the problem, we decided in favour of simplicity. Consequently, our parameters are to be viewed as averaged over time and over different types of individuals (see note 2).

We now examine the behaviour of Equation (1) in some detail. The ‘no-bias’ limit is equivalent to setting $R = 1$ in the above equation, corresponding to those values of the parameters q, n, and $f = f_1 = f_0$ that result in the same expected number of deaths for sampling from S_i only and for sampling from both S_i and S_o. In other words, under these circumstances, sampling only from S_i yields an unbiased estimate of the underlying population death rate, and, therefore, sampling only from S_i would be justified. After simplification, it follows that $R = 1$ if and only if $n(q - 1)(2f - 1) = 0$, yielding altogether three different solutions, namely, $n = 0$ (independently of the values of q and f), $q = 1$ (independently of n and f), and $f = 1/2$ (independently of q and n).

- The solution $n = N_i/N_o = 0$ corresponds to the entire population being in the samplable region ($N_o = 0$).
- The solution $q = q_0/q_o = 1$ corresponds to having equal death rates in the samplable and non-samplable region ($q_i = q_o$).
- The solution $f = 1/2$ yields $R = 1$ regardless of the values of q and n and corresponds to perfect mixing of populations between the zones. This means the entire population divides its time evenly between the two zones.

The last two solutions, $q = 1$ and $f = 1/2$, are interesting conceptually. In general, the interpretation of q and f can be recast in terms of localization of violence and people, respectively. Localization of violence is captured by the condition $q = 1$. If $q = 1$, violence is not localized in either the samplable or the non-samplable region, but is uniformly present everywhere, yielding $R = 1$. However, if $q = 1$, violence becomes localized and predominates in either of the two regions. In particular, when $q > 1$, the samplable region S_i has a higher rate of violence than the non-samplable region S_o. Similarly, localization of people is captured by the condition $f = 1/2$, since if $f = 1/2$, people are equally likely to be in either subsystem regardless of where they are resident, so residence loses its meaning. In particular, as $f \to 1$, people are increasingly more localized in their residential areas.

Qualitatively speaking, the bias in this framework emerges from having simultaneously partial localization of violence and partial localization of people. Both of these conditions are needed for the bias to emerge, since if $f = 1/2$, we have $R = 1$ regardless of the values of q and n, and if $q = 1$, we have $R = 1$ regardless of the values of n and f. To illustrate the idea of localization, one could suggest that the spreading of an airborne disease corresponds to $q = 1$, since everyone would have a similar chance of being infected. Similarly, if the movement of people were unconstrained, corresponding to $f = 1/2$, the time people spend in low or high violence zones would be uncorrelated.
with the location of their residence. With the suggested parameter values, \(q = 5 \) and \(f = 13/14 \), it is clear that both violence and people are highly localized and, consequently, a bias is introduced.

Sensitivity Analysis

In this section, we conduct a sensitivity analysis of the model, which allows us to determine how sensitive the bias factor \(R \) is to variations in parameters. Such analysis is especially important, since the details of the implementation followed in Burnham et al. (2006) are unclear, and the authors have not released data with sufficient resolution to resolve the ambiguity regarding appropriate parameter values.

The bias factor, \(R = R(f_i, f_o, q, n) \), given by Equation (1), depends on four parameters; that is, it is a function from a subset of the space of real-valued 4-vectors \(\mathbb{R}^4 \) to a subset of the real numbers \(\mathbb{R} \). In what follows, we explore the sensitivity of the model to different parameter values. Note that the regions of the parameter space that are plausible depend on the context in which the model is applied.

Since it is not possible to visualize \(R \) by plotting its range versus its domain, we focus below on some of the regions of the parameter space that result in an over-estimate (\(R > 1 \)). We emphasize that some of the explored parameter values are not appropriate for the present study, but they are shown here for the purpose of exposing the model to a wide readership. However, if the details and high-resolution data for Burnham et al. (2006) are disclosed in the future, it will be possible to obtain estimates for \(q \) and \(n \).

In Table I we tabulate the values of \(R \) for different values of the parameters \((q, n, f_i, f_o)\).

Table I. Sensitivity Analysis in Tabular Form

<table>
<thead>
<tr>
<th>(n = 12)</th>
<th>(n = 8)</th>
<th>(n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_i)</td>
<td>(f_o)</td>
<td>(f_i)</td>
</tr>
<tr>
<td>1.53 1.61 1.70 1.78 1.86</td>
<td>2.46 2.67 2.87 3.06 3.25</td>
<td>3.25 3.55 3.82 4.09 4.33</td>
</tr>
<tr>
<td>1.41 1.48 1.56 1.64 1.71</td>
<td>1.98 2.16 2.33 2.49 2.65</td>
<td>2.36 2.60 2.83 3.04 3.25</td>
</tr>
<tr>
<td>1.30 1.37 1.44 1.52 1.59</td>
<td>1.65 1.81 1.96 2.10 2.24</td>
<td>1.86 2.05 2.24 2.42 2.60</td>
</tr>
<tr>
<td>1.21 1.28 1.34 1.41 1.48</td>
<td>1.42 1.56 1.69 1.82 1.94</td>
<td>1.53 1.70 1.86 2.01 2.17</td>
</tr>
<tr>
<td>1.13 1.19 1.26 1.32 1.38</td>
<td>1.25 1.37 1.48 1.60 1.71</td>
<td>1.30 1.44 1.59 1.72 1.86</td>
</tr>
<tr>
<td>1.50 1.58 1.65 1.73 1.80</td>
<td>2.33 2.51 2.68 2.85 3.00</td>
<td>3.00 3.24 3.46 3.67 3.86</td>
</tr>
<tr>
<td>1.38 1.46 1.53 1.60 1.67</td>
<td>1.91 2.07 2.22 2.36 2.50</td>
<td>2.25 2.45 2.65 2.83 3.00</td>
</tr>
<tr>
<td>1.29 1.35 1.42 1.49 1.55</td>
<td>1.62 1.75 1.89 2.02 2.14</td>
<td>1.80 1.98 2.14 2.30 2.45</td>
</tr>
<tr>
<td>1.20 1.26 1.33 1.39 1.45</td>
<td>1.40 1.52 1.65 1.76 1.87</td>
<td>1.50 1.65 1.80 1.94 2.08</td>
</tr>
<tr>
<td>1.12 1.19 1.25 1.31 1.36</td>
<td>1.24 1.35 1.46 1.56 1.67</td>
<td>1.29 1.42 1.55 1.68 1.80</td>
</tr>
<tr>
<td>1.43 1.49 1.55 1.61 1.67</td>
<td>2.06 2.18 2.30 2.40 2.50</td>
<td>2.50 2.65 2.78 2.89 3.00</td>
</tr>
<tr>
<td>1.33 1.39 1.45 1.51 1.56</td>
<td>1.75 1.87 1.98 2.08 2.17</td>
<td>2.00 2.14 2.27 2.39 2.50</td>
</tr>
<tr>
<td>1.25 1.31 1.36 1.42 1.47</td>
<td>1.52 1.63 1.73 1.83 1.92</td>
<td>1.67 1.80 1.92 2.04 2.14</td>
</tr>
<tr>
<td>1.18 1.23 1.29 1.34 1.39</td>
<td>1.35 1.45 1.55 1.64 1.72</td>
<td>1.43 1.55 1.67 1.77 1.88</td>
</tr>
<tr>
<td>1.11 1.16 1.22 1.27 1.32</td>
<td>1.21 1.30 1.39 1.48 1.56</td>
<td>1.25 1.36 1.47 1.57 1.67</td>
</tr>
</tbody>
</table>

Value of the bias factor \(R \) for different values of parameters \((q, n, f_i, f_o)\). Each of the \(3 \times 3 \) panels in the table corresponds to a fixed set of values for \(q = q_i/q_o \) and \(n = N_i/N_o \). The values of \(f_i \) increase from left to right, and those of \(f_o \) from bottom to top, running over the set \{0.6, 0.7, 0.8, 0.9, 1.0\}, as implied by the arrows in the bottom-left panel.
Appendix A. Cluster Sampling and the EPI Method

Cluster sampling methodology has been applied frequently in recent years to estimate conflict mortality (e.g. Spiegel & Salama, 2000; Depoortere et al., 2004; Coghlan et al., 2006). Cluster sampling offers substantial benefits relative to surveying alternatives such as simple random sampling (see Thompson, 2002, for an overview). Simple random sampling of households at a national level requires a complete national list of households from which a sample is then drawn at random. Even when this is feasible, the households that are selected will be widely scattered, so that it will cost much time and money for field teams to visit all of them. Moreover, travel is risky during an ongoing conflict, so high travel time translates into high risk. Under household cluster sampling, in contrast, researchers select groups of households in close proximity to one another, reducing travel time between households. Another key advantage of this approach is that it can proceed without a full national listing of households; household lists can be developed after the selection of lower-level sampling units. Indeed, the SMART Methodology (2006: 35, 52), an important attempt to standardize epidemiological surveys of mortality and nutrition in emergency situations, states simply that cluster sampling is applied when researchers lack a sufficiently complete household listing. A third reason for employing cluster sampling is that this method can be designed so as to lower sampling variance (Thompson, 2002: 138), although the SMART Methodology (2006: 36) would practically rule out such sampling techniques as violating

4 For simplicity, we will write of national surveys but all the same arguments apply to sub-national surveys.
5 This goes too far, in our opinion, since, as we indicate, there are other reasons for using cluster sampling, even when other methods are feasible.
a principle, stressed by this handbook, that each household should have an equal chance of selection. In practice, cluster sampling is used primarily for reasons of convenience, practicality, and safety. These are important concerns, and cluster sampling is a vital and useful tool in conflict mortality surveys.

Since the absence of a reliable national listing of households is a prime motivation for using cluster sampling, a large and unresolved issue remains: how do researchers locate the households to be interviewed? Burnham et al. (2006) proceeded as follows, according to their stated methodology. They used population estimates of Governorates (analogous to provinces, counties, or states) to allocate clusters to Governorates, with the number of clusters roughly proportional to estimated populations. They choose, as locations of these clusters, ‘constituent administrative units’ (CAUs) within each Governorate, where the CAUs were selected proportional to their estimated population; a CAU may receive more than one cluster. We have already discussed how, at the next stage, a random cross street to a random main street was selected. The field team would enumerate the households on the street, select one at random from this newly created list, and initiate the interviewing from this household, proceeding to 39 further ‘adjacent’ households. The key point here is that this procedure requires a listing of households only at its final stage, after a cross street to a main street has already been selected. The sampling procedure is economical.

While the specific street-off-the-main-street scheme of Burnham et al. (2006), which we have referred to in the article as the cross-street sampling algorithm, is unusual for a conflict mortality study, it is really a variation on a last-stage sampling approach known as the EPI method, which has been used increasingly in conflict mortality studies in recent years (e.g. Spiegel & Salama, 2000; Depoortere et al., 2004; Coghlan et al., 2006). The experimental properties of this method, originally designed to measure vaccination coverage, are poorly understood at present. Yet, its easy applicability makes it a highly attractive option for survey researchers. Under this approach, one can draw a sample from, for example, a village, by going to the village center, spinning a pen or bottle, walking in the direction the bottle points to the edge of the village, enumerating the households along the way, and choosing one of them at random for the first interview. In an urban environment, movement in a random direction from the center of a cluster must be consistent with the street layout. The approach of Burnham et al. (2006) is a logical extension of the EPI method to such an environment. In this case, the center of the village or refugee camp corresponds to the main street, and the selected cross street corresponds to the random direction.

The SMART Methodology (2006: 57) notes that the standard EPI approach, when applied to a circular village, gives higher selection probability to households near the center than to households near the edge, and it suggests a variation on the usual approach. Under this modification, a team follows one randomly chosen direction from the center to the edge of a village and then chooses another random direction back into the interior. The team enumerates households and samples along this second direction into the interior. Again, experimental comparisons of this method against other sampling alternatives would be welcome.

6 For example, SMART Methodology (2006: 56) recommends that the EPI method only be used in cases where simple or systematic random sampling is impossible, suggesting that the EPI method ‘results in a somewhat biased sample… There have not been sufficient studies where the two sampling methods have been compared at ‘cluster’ level … to determine the extent to which this bias influences the results of the survey… research to determine the extent of the bias introduced into nutritional and mortality surveys is urgently needed.’
Appendix B. Derivation of the Model

We consider a constant population size with \(N_i + N_o = N \). The probability of an \(S_i \) resident being present in \(S_i \) at a given point in time is \(f_i \) (\(f_o \)). Since \((N_i/N_i + N_o)\) and \(N_i/(N_o + N_i)\) and give the probabilities that a randomly chosen person is resident in \(S_i \) or \(S_o \), it follows that \(q_i f_i N_i \) is the probability that a randomly chosen person is resident in \(S_i \) and gets killed in \(S_i \), whereas \(q_i(1-f_o) N_o/(N_i + N_o) \) is the probability that the person is resident in \(S_o \) and gets killed in \(S_i \). Similarly, \(q_o(1-f_i) N_o/(N_i + N_o) \) is the probability that a randomly chosen person is resident in \(S_i \) and gets killed in \(S_o \), while \(q_o f_o N_o/(N_i + N_o) \) is the probability that the person is resident in \(S_o \) and gets killed in \(S_o \). Hence, the probability that a randomly chosen person gets killed is

\[
q_i f_i N_i + q_o (1 - f_o) N_o + q_i (1 - f_i) N_i + q_o f_o N_o
\]

\[
= \frac{(q_i - q_o)(f_i N_i - f_o N_o) + q_o N_o + q_i N_i}{N_i + N_o}.
\]

Therefore, the expected number of deaths in a population of size \(N \) is

\[
(q_i - q_o)(f_i N_i - f_o N_o) + q_o N_o + q_i N_i.
\]

(2)

By contrast, the probability that a randomly chosen person who is a resident of \(S_i \) gets killed is

\[
q_i f_i + q_o (1 - f_o).
\]

Hence, the expected number of deaths for a population of size \(N \), based on the death rate for \(S_i \) only, would be

\[
(N_i + N_o) [q_i f_i + q_o (1 - f_o)].
\]

(3)

The ratio of these expectations (Expression (3) divided by Expression (2)) defines the bias factor:

\[
R = \frac{(N_i + N_o) [q_i f_i + q_o (1 - f_o)]}{(q_i - q_o)(f_i N_i - f_o N_o) + q_o N_o + q_i N_i}.
\]

(4)

For surveys that sample only from \(S_o \), \(R > 1 \) suggests an overestimate of conflict mortality on average, whereas \(R < 1 \) suggests an underestimate on average. Assuming that \(N_i \neq 0 \) and \(q_o \neq 0 \), and setting \(q = q_f/q_o \) and \(n = N_o/N_i \), Equation (4), yields Equation (1) in the main text:

\[
R = R(f, f_o, q, n) = \frac{(1 + n)(1 + qf_i - f_o)}{(q - 1)(f_i - f_o n) + qn + 1}.
\]

Hence, the bias factor \(R \) depends only on \(f_i, f_o \) and the ratios \(q = q_f/q_o \) and \(n = N_o/N_i \). When \(f_i = f_o = f \), Equation (1) simplifies to

\[
R = R(f, q, n) = \frac{(1 + n)(1 + qf - f)}{f(q - 1)(1 - n) + qn + 1}.
\]

(5)

The ‘no-bias’ limit of \(R = 1 \) requires either (1) \(n = 0 \) (i.e. \(N_o = 0 \), implying no individual is resident outside the survey space \(S_o \), or (2) \(q = 1 \) (i.e. \(q_i = q_o \)), implying equal death rates inside and outside the survey space, or (3) \(f = 1/2 \), which suggests that residents of \(S_i \) spend on average 12 hours per day in \(S_o \) and vice versa. Although permissible mathematically, these solutions would be difficult to justify for a conflict like the one in Iraq (see the discussion in the article). Setting \(R(f, q, n) = r \) for general \(r \) and solving for \(q \), in terms of \(n \) and \(f \), yields

\[
q(f, n, r) = \frac{f(1 + n + nr - r) - r - n - 1}{f(1 + n + nr - r) - nr}.
\]

(6)

In general, the location of the contour \(R(f, q, n) = r \) in Figure 3 will depend on the mobility factor \(f \); except for the special case \(R(f, q, n) = 1 \), which is independent of \(f \).

References

Burnham, Gilbert; Riyad Lafta, Shannon Doocy & Les Roberts, 2006. ‘Mortality After

MICHAEL SPAGAT, b. 1960, PhD in Economics (Harvard University, 1988): Professor, Department of Economics, Royal Holloway College, University of London (1999–) and Research Associate at CERAC. Other affiliations: CEPR, WDI, HiCN. Recent articles published in *Journal of Peace Research, Public Choice, and Journal of Comparative Economics*.

SEAN GOURLEY, b. 1979, MSc in Physics, University of Canterbury, Rhodes scholar and PhD candidate in physics at the University of Oxford.

JUKKA-PEKKA ONNELA, b. 1976, PhD in Computational Science (Helsinki University of Technology, 2006); Junior Research Fellow in Complex Systems, Wolfson College, University of Oxford. Other affiliations: Department of Physics and Said Business School, University of Oxford; Department of Biomedical Engineering and Computational Science, Helsinki University of Technology.